Transcript provided below.
Are we finally going to lead with deep-sea mining? We’re going to lead with deep-sea mining. Welcome to the Weekly Salvage.
Over 15 years of ocean science and conservation online
Transcript provided below.
Are we finally going to lead with deep-sea mining? We’re going to lead with deep-sea mining. Welcome to the Weekly Salvage.
Transcript provided below.
Read More “Big storms, lost ships, fake shrimp, and more! Weekly Salvage: September 9, 2019” »
[The following is a transcript from a talk I gave at the 2019 Minerals, Materials, and Society Symposium at the University of Delaware in August, 2019. It has been lightly edited for clarity.]
Good afternoon and thank you all for coming. I want to change tracks for a bit and scan the horizon to think about what the future of exploration and monitoring in the high seas might look like because ocean and conservation technology is in the midst of an evolutionary shift in who has access to the tools necessary to observe the deep ocean.
This is the Area. Areas Beyond National Jurisdiction, International Waters, the High Seas, the Outlaw Ocean. It’s the portion of the ocean that falls outside of national EEZs and is held in trust by the UN under the Convention on the Law of the Sea as the Common Heritage of Humankind. It covers 64% of the ocean and nearly half of the total surface of the Earth. It’s also the region in which most major deep-sea mining ventures intend to operate.
Today, there are more robots exploring the ocean than ever before. From autonomous ocean-crossing gliders to massive industrial remotely operated vehicles to new tools for science and exploration that open new windows into the abyss, underwater robots are giving people a change to experience the ocean like never before. The fastest growing sector of this new robotic frontier? Small, recreational, observation class ROVs.
Today, we published our guidelines on the responsible operation of small recreational ROVs around marine mammals.
You can read the full paper here: Thaler and friends (2019) Bot Meets Whale: Best Practices for Mitigating Negative Interactions Between Marine Mammals and MicroROVs. DOI: 10.3389/fmars.2019.00506.
Reprinted below are the explicit guidelines proposed in the paper.
1. Education. Central to any mitigation strategy involving diverse stakeholders, ranging from professional to recreational, is user education. The following are critical to establishing a responsible user community: Ensuring all potential microROV users 1) not only understand the laws and regulations for wildlife viewing that apply to the jurisdiction in which they are operating, but understand why those regulations are in place; and, most importantly, 2) have internalized a stewardship ethic that motivates them to respect the rationale behind those regulations even when operating in regions where those regulations are not enforced. This is most effective when it occurs at point-of-sale or registration of the microROV. Thus, while the additional four guidelines relate to the user, this first one relates to the manufacturer. To most effectively convey the potential harm that microROVs could pose to marine mammals, the manufacturers are best positioned to educate their user base by providing informational material with each microROV sale.
Flotsam (what we’re obsessed with right now)
Foghorn (A Call to Action!)
Flotsam (what we’re obsessed with right now)
[The following is a transcript from a talk I gave at a side event during Part II of the 25th Session of the International Seabed Authority in July, 2019. It has been lightly edited for clarity.]
I want to change gears this afternoon and talk about a very different kind of mining. For the last two years, Diva and I have been engaged in a data mining project to discover what we can learn and what we still need to learn about biodiversity at hydrothermal vents from the 40-year history of ocean exploration in the deep sea.
“When the RV Knorr set sail for the Galapagos Rift in 1977, the geologists aboard eagerly anticipated observing a deep-sea hydrothermal vent field for the first time. What they did not expect to find was life—abundant and unlike anything ever seen before. A series of dives aboard the HOV Alvin during that expedition revealed not only deep-sea hydrothermal vents but fields of clams and the towering, bright red tubeworms that would become icons of the deep sea. So unexpected was the discovery of these vibrant ecosystems that the ship carried no biological preservatives. The first specimens from the vent field that would soon be named “Garden of Eden” were fixed in vodka from the scientists’ private reserves.”
Thaler and Amon 2019
In the forty years since that first discovery, hundreds of research expedition ventured into the deep oceans to study and understand the ecology of deep-sea hydrothermal vents. In doing so, they discovered thousands of new species, unraveled the secrets of chemosynthesis, and fundamentally altered our understanding of what it means to be alive on this planet. Now, as deep-sea mining crawls slowly towards production, we must transform those discoveries into conservation and management principles to safeguard the diversity and resilience of life in the deep sea.
Though research at hydrothermal vents looms large in the disciplines of deep-sea science, relative to almost any terrestrial system, they are practically unexplored. Over the last 2 years, Drs. Andrew Thaler and Diva Amon have poured through every available cruise report that made a biological observation at the deep-sea hydrothermal vent to assess how disproportionate research effort shapes or perception of hydrothermal vent ecosystems and impacts how we make management decisions in the wake of a new form of anthropogenic disturbance.